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Problem #2: unfair decision-making

Some data X —) ML System ——> Some task T
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Problem #2: unfair decision-making
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What do we want?

1. As little sensitive information leakage as possible.
2. As little influence on the task by the sensitive information as possible.
3. A decent usage of the data X.

P Maitain sufficient information about X to perform tasks (e.g., task T).

4, (Extra) If the system is specific for T, leak as few of the information about X
not used for T as possible.
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How can we do that?
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1. Design a new system.
P Robust against privacy attacks (e.g., DP training procedures).
P Robust decision making.

2. Generate a representation Y of the data and keep our favourite ML System.
» In particular, our proposal is:

DataX——| Encoder

—— Representation Y —

ML System

—>Task T

Low information about S
Enough information necessary for T

Low information about X not used for T
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Problem formalization

In terms of mutual information:

» Without a specific task T. » With a specific task T.
X X
Y (5
q
N
T
arginf 1(S;Y) arginf I(S;Y) +1(X; Y|S, T)
Py|x: >r Py|x: >r
> Conditional Privacy Funnel » Conditional Fairness Bottleneck
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Problem relaxation

We relax the constrained optimization problems through their Lagrangians.
» Conditional Privacy Funnel (CPF)
> Leer(Pyx, A) = 1(S;¥) — AI(X; ¥|S), A>0
» Conditional Fairness Bottleneck (CFB)
> Lers(Pyix, A) = (S Y) +1(X; YIS, T) — XI(T; Y|S), A >0

We simplify the Lagrangians through an equivalence:
> Proposition: Minimizing Lcp (Py|x, A) is equivalent to minimizing
> Tere(Pyix, ) = 10X Y) =YX Y[S), v =A+1
> Proposition: Minimizing Lcrs(Py|x, A) is equivalent to minimizing
> TJers(Prix B) = 1(X;Y) = BI(T; Y[S), B =A+1
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In other words...

» Conditional Privacy Funnel » Conditional Fairness Bottleneck
X X
Y ( 5
s N
T
» Maximally compressed Y. » Maximally compressed Y.
> Maximize I(X; Y[S). > Maximize I(T; |S).
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A solution via variational inference

We assume:
> A paramaterized encoder and marginal densities py|x, g, y|6-
> Avariational decoder and inference densities x|y s, 4, dr|v,s,¢-

Then the solution of the Lagrangians is seeked by

» A VAE-like method for the CPF. » A VIB-like method for the CFB.

PY|(X,0) 4x|(5,Y.) Py |(x,0) 4r|(S.Y.¢)
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} Caveats and “TO-DOs”

» Caveat: The variational approach to the CPF and the CFB does not offer
theoretical guarantees.

> It scales well, but needs an a-posteriori evaluation of the mutual information.

> Caveat: The encoding Py|x can leak information about the sensitive data S.
> One needs to keep Py|x private and only release Y.

» TO-DO: Force the method to obtain a specific solution of the CPF or CFB
with a single optimization.

» Using similar techniques to the Convex Information Bottleneck Lagrangian
» TO-DO: Find theoretical connections between the CPF and CFB and other
measures of privacy/fairness.

» It is hard to find connections with DP, since one uses on average measures
and the other worst-case measures.
» Some connections already: the CPF and CFB enforce demographic parity.
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Take-aways

1. The privacy and fairness problems are similar to each other.
2. The CPF and CFB model these problems as a constrained optimization
involving information measures.
3. Avariational Bayesian optimization of the Lagrangians of the CPF and CFB
lead to a VAE/VIB-like optimization through gradient descent:
» The encoder network is the same.
» The decoder receives the protected data.
4. The proposed method achieves SoTA results on the fairness benchmarks
and improves upon variational approaches to privacy.
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